NOTE ON THE "ASYMPTOTIC MINIMUM VARIANCE PROPERTY" OF LEAST SQUARES ESTIMATORS IN TIME-SERIES REGRESSION

MRS. V. MUKHERJEE, POONA¹ (Received in March, 1967)

1. In his paper on "Estimation in time-series regression" Durbin² has given the following results for the least squares estimators of the parameters β in the regression equation

$$Y = X\beta + \epsilon$$

where Y is an $n \times 1$ vector

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$

X is the $n \times k$ matrix

$$\left[\begin{array}{c} X_{11}, \dots, X_{1k} \\ X_{n1}, \dots, X_{nk} \end{array}\right]$$

of n sets of observations of the k variates $X_1, ..., X_k$ some of which may be lagged Y's the rank of X not being less than k;

and ϵ is the error-variable vector with

$$E(\epsilon) = 0. ...(1)$$

and

$$E(\epsilon \epsilon') = \sigma^2 I$$
.

Prior to obtaining the results Durbin first considers the set of unbiased linear estimating equations

$$t_1b + t_2 = 0$$
 ...(2)

^{1.} At present at Shivaji University Kolhapur.

^{2.} Durbin, J.: Estimation in Time Series Regression. J. Royal Stat. Soc. Ser. B., Vol. 22, No. 1, pp. 139-153, 1960.

for obtaining the estimators b of the parameters β where t_1 and t_2 are a $k \times k$ matrix and $k \times 1$ vector respectively of functions of all the variables involved and

$$E(t_1) = I$$

and

$$E(t_1) = I$$

$$E(t_1\beta + t_2) = 0 \qquad ...(3)$$

He shows that

$$V(t_1\beta + t_2) - g^{-1}$$

is a positive definite or semi-definite matrix, g being the information matrix. g^{-1} is therefore the minimal variance-matrix for all $t_1\beta + t_2$ satisfying conditions (3).

If $z_1\beta + z_2$ is any other estimating equation satisfying condition (3) and if

$$V(t_1\beta+t_2)-V(\varsigma_1\beta+\varsigma_2)$$

is a negative definite or semidefinite matrix for all such $5_1\beta + 5_2$, Durbin calls the equation (2) the best unbiased linear estimating equation of β .

As a particular case Durbin considers the case when the regression relationship (1) holds and

- (i) ϵ 's are distributed normally,
- or (ii) \in 's are non-normal and have finite moments.

In case (i) (1) the maximum-likelihood estimates are given by

$$M^{-1}(X'X\beta - X'Y) = 0 \qquad ...(4)$$

$$E(X'X) = M,$$

where

as

$$E(X'X) = M$$

and the information-matrix is given by M/σ^2 .

Further the variance-matrix of $M^{-1}(X'X\beta - X'Y)$ is

$$\sigma^2 M^{-1} = g^{-1}$$
.

Hence according to Durbin's definitions the maximum-likelihood equations are the best unbiased linear estimating equations for all sample sizes. (2) If further $M^{-1}X'X$ converges stochastically to I and a diagonal matrix δ_n depending on n only exists such that

$$\delta_n M^{-1} \delta_n \to W$$
, a finite (p.d.) matrix

 $n \to \infty$

$$\delta_n(b-\beta)$$
 and $-\delta_n M^{-1}(X'X\beta-X'Y)$

have the same limiting distributions as $n \to \infty$ provided they exist. In particular $\delta_n(b-\beta)$ has 0 as mean and $\sigma^2 W$ as variance-matrix in the limit as $n \to \infty$.

$$S^2 = (y - Xb)' (y - Xb)/n - k$$

is again an asymptotically unbiased estimator of σ^2 .

In case (ii) when the ϵ 's are non-normal it is still true that the least squares estimators are given by the unbiased linear estimating equations

$$M^{-1}(X'Xb-X'Y)=0$$
 ...(5)

with

$$E[M^{-1}(XX'\beta-X'Y)]=0$$

and

$$V[M^{-1}(XX'\beta-X'Y)] = \sigma^2 M^{-1}$$
.

Durbin further shows that results as of case (i) are valid here also.

2. In this note a further property of asymptotic minimum variance is proved for the least squares estimators of β in the case of non-normal errors with finite moments.

The estimating equations for β given by (5) are a particular case of linear estimating equations given by

$$Bb - Ay = 0 \qquad \dots (6)$$

with

$$E(B)=I$$

where A and B are matrices of functions of elements in X. Let these equations be unbiased estimating equations.

Then

$$E(B\beta - Ay) = 0$$

or
$$E[(B-AX)\beta - A\epsilon] = 0 \qquad ...(7)$$

Hence
$$E(B-AX)=0$$
 or $E(AX)=E(B)=1$...(8)

and

$$E(A\epsilon) = 0 ...(9)$$

Conditions (9) are satisfied if ϵ_r is uncorrelated with elements in the r^{th} column of A for all r.

Let us further assume that
$$B=AX$$
 ...(10)

and
$$AX$$
 converges to I stochastically ...(11)

and ϵ_r is distributed independently of elements in the first r columns of A. ...(12)

Because of assumptions (10)

$$(B-AX)\beta-A\xi=-A\xi$$
.

Hence
$$V(B\beta - Ay) = V(-A\epsilon)$$
$$= \sigma^2 E(AA') \qquad ...(13)$$

because of assumptions (12).

But
$$E(AA')$$

 $=E[((A-M^{-1}X')+M^{-1}X')((A-M^{-1}X')+M^{-1}X')']$
 $=E[(A-M^{-1}X')(A-M^{-1}X')'+(A-M^{-1}X')XM^{-1}$
 $+M^{-1}X'(A'-XM^{-1})+M^{-1}X'XM^{-1}$
 $=E[(A-M^{-1}X')(A-M^{-1}X')']+M^{-1},$
since $E(AX)=1$
and $E(X'X)=M.$

 $(A-M^{-1}X')(A-M^{-1}X')'$ has non-negative diagonal elements. Hence $E[(A-M^{-1}X')(A-M^{-1}X')']$ has non-negative diagonal elements.

Hence E(AA') has minimum diagonal elements when $A-M^{-1}X^1=0$ and by condition (10) $B=M^{-1}X'X$, so that the equations (6) reduce to the 1.h.s. of equation (5). Hence the elements of $B\beta-Ay$ have minimum variance when $A=M^{-1}X'$ and $B=M^{-1}X'X$.

Hence since by condition (11)B converges stochastically to I, elements in $\delta_n(B\beta-Ay)$ and hence in $-\delta_n(b-\beta)$ have minimum variances asymptotically when $A=M^{-1}X'$ and $B=M^{-1}X'X$ that is when b are the least squares estimators. It can similarly be shown that $\delta_n C(b-\beta)$ when C is a $k' \times k$ matrix of arbitrary constants and $k' \leq k$ to have asymptotically minimum diagonal elements when b are the least squares estimators of β among estimators given by (6) satisfying conditions (8) to (12).

Since the mini mum-variance property considered here is only asymptotic it follows that if

$$A_1 = M^{-1}X' + A_2$$

and

$$B_1 = A_1 X$$

where

$$E(A_2X)=0$$
 and A_2X

converges stochistically to 0 then the estimators given by $B_1b-A_1y=0$ have the same asymptotic properties as the least square estimators.

It should be noted that A in equations (6) need not have functions of elements in X only. The argument and the results are still valid if A contains some instrumental variables satisfying conditions (8), (9), (10), (11) and (12).